Today's wireless technologies are largely based on inflexible designs, which make them inefficient and prone to a variety of wireless attacks. To address this key issue, wireless receivers will need to (i) infer on-the-fly the physical layer parameters currently used by transmitters; and if needed, (ii) change their hardware and software structures to demodulate the incoming waveform. In this paper, we introduce PolymoRF, a deep learning-based polymorphic receiver able to reconfigure itself in real time based on the inferred waveform parameters. Our key technical innovations are (i) a novel embedded deep learning architecture, called RFNet, which enables the solution of key waveform inference problems, and (ii) a generalized hardware/software architecture that integrates RFNet with radio components and signal processing. We prototype PolymoRF on a custom software-defined radio platform and show through extensive over-the-air experiments that PolymoRF achieves throughput within 87% of a perfect-knowledge Oracle system, thus demonstrating for the first time that polymorphic receivers are feasible.
It has been forecast that over 50 billion mobile devices will be soon connected to the Internet, creating the biggest network the world has ever seen.3 However, only very recently has the community started to acknowledge that squeezing billions of devices into tiny spectrum portions will inevitably create disruptive levels of interference. Although Mitola and Maguire first envisioned the concept of "cognitive radios" 20 years ago,8 today's commercial wireless devices still use inflexible wireless standards such as Wi-Fi and Bluetooth—and thus, are still very far from being truly real-time reconfigurable. Just to give an example of the seriousness of the spectrum inflexibility issue, DARPA has recently invested to launch the spectrum collaboration challenge (SC2), where the target is to design spectrum access schemes that "[…] best share spectrum with any network(s), in any environment, without prior knowledge, leveraging on machine-learning techniques."25
Intuitively, the issues of existing communication systems could be addressed by allowing transmitters to dynamically switch parameters such as carrier frequency, FFT size, and symbol modulation without coordination with the receiver. This will allow the transmitter efficient spectrum occupation using the most appropriate wireless scheme at any given moment. Figure 1 shows an example of a polymorphic receiver able to infer the current transmitter's physical layer scheme (e.g., OFDM vs. narrowband) and the scheme's parameters (e.g., FFT size, channel, modulation), and then demodulate each portion of the signal.
Figure 1. Example of a self-adaptive polymorphic receiver.
Doing away with explicit coordination and inflexible physical layers is the first step toward wireless receivers able to self-adapt to demodulate many waveform with a single radio interface.15 Yet, despite their compelling necessity, these wireless receivers do not exist today. This manuscript aims to change the current state of affairs by proposing the first demonstration of PolymoRF, the first polymorphic wireless receiver. Achieving this goal required us to address a set of key research challenges summarized below:
1.1. Technical contributions
This paper's key innovation is to finally bridge the gap between the extensive theoretical research on cognitive radios and the associated system-level challenges, by demonstrating that inference-based wireless communications are indeed feasible on off-the-shelf embedded devices. Beyond the examples and the evaluation conducted in Section 5, the main purpose of this work is to provide a blueprint for next-generation wireless receivers, where their radio hardware and software are not protocol-specific, but instead spectrum-driven and adaptable on-the-fly to different waveforms.
We summarize our main technical contributions as follows:
The primary operations performed by the PolymoRF platform are summarized in Figure 2. In a nutshell, PolymoRF can be considered as a full-fledged learning-based software-defined radio architecture where both the inference system and the demodulation strategy can be morphed into new configurations at will.
Figure 2. Modules and operations of PolymoRF.
We provide a walk-through of the main operations performed by PolymoRF with the help of Figure 2. Although for simplicity we refer to specific hardware equipment and circuits in our explanation, we point out that the building blocks of our platform design (BRAMs, DMA, FIFOs, etc.) can be implemented in any commercially available FPGA platform.
We assume the transmitter may transmit by choosing among a discrete set of physical layer parameters that are known at the receiver's side. We define as Y a tuple of such physical layer parameters, which may be changed at will by the transmitter but not before Tsw seconds between each change, which we refer to a switching time. For the sake of generality, in this paper we will not assume any particular strategy in the transmitter's parameter choice, which can be driven by a series of factors (including anti-jamming strategy, noise avoidance, throughput optimization, and so on) that will be considered as out of the scope of this paper, whose main focus is instead on the receiver's side.
We first motivate the use of convolutional neural networks for RFNet, we discuss some RF-specific learning challenges, and then we describe in details the RFNet input construction and its complete architecture.
By construction, it follows that T[r + 1, c] = s[(r + 1) · W + c] = s[r·W+c+W], meaning that (i) I/Q samples in adjacent columns will be spaced in time by a factor of 1, and (ii) I/Q samples in adjacent rows will be spaced in time by a factor of W; moreover, (iii) our input tensors have depth equal to 2, corresponding to the I and Q data, respectively, which will allow the RFNet filters to examine each element of the input tensor without decoupling the I and Q components of the RF waveform. Figure 3 depicts an example of a 2 × 4 and 1 × 3 filters operating on a waveform.
Figure 3. How RFNet constructs tensors from I/Q samples.
This section presents the hardware and driver design and implementation of our PolymoRF system. We discuss the design, hardware implementation, and main operations of RFNet in Section 4.1 (Figure 4).
Figure 4. RFNet captures small-scale I/Q pattern sequences.
4.1. RFNet: Architecture and operations
Figure 5. Block scheme of PolymoRF's learning circuit.
We first discuss details on our PolymoRF prototype in Section 5.1, and then discuss the data collection and training process in Section 5.2. We then investigate the performance of RFNet in Section 5.3 on a single-carrier system. Then, we implement and test the throughput performance on a multi-carrier polymorphic OFDM system in Section 5.4. Finally, we report the latency and hardware performance of PolymoRF in Section 5.5.
5.1. Protoype and experimental setup
Our prototype is entirely based on off-the-shelf equipment. Specifically, we use a Xilinx Zynq-7000 XC7Z045–2FFG900C system-on-chip (SoC), which is a circuit integrating CPU, FPGA, and I/O all on a single substrate.9 We chose an SoC since it provides significant flexibility in the FPGA portion of the platform, thus allowing us to fully evaluate the tradeoffs during system design. Moreover, the Zynq-7000 fully supports embedded Linux, which in effect makes the ZC706 a good prototype for a wireless platform. Our Zynq-7000 contains two ARM Cortex-A9 MPCore CPUs and a Kintex-7 FPGA,21 running on top of a Xilinx ZC706 evaluation board.22
For both intra-FPGA and FPGA-CPU data exchange, we use the Advanced eXtensible Interface (AXI) bus specification.23 In the AXI standard, the data is exchanged during read or write transactions. In each transaction, the AXI master is charged with initiating the transfer; the AXI slave, in turn, is tasked with responding to the AXI master with the result of the transaction (i.e., success/failure). An AXI master can have multiple AXI slaves and vice versa, according to the specific FPGA design. Multiple AXI masters/slaves can communicate with each other by using AXI interconnects. Specifically, AXI-Lite is used for register access and configures the circuits inside the FPGA, while AXI-Stream is used to transport high-bandwidth streaming data inside the FPGA. AXI-Full is instead used by the CPU to read/write consecutive memory locations from/to the FPGA.
To study PolymoRF under realistic channel environments, we have used the experimental setup shown in Figure 6. These scenarios investigate a line-of-sight (LOS) configuration where the transmitter is placed approximately 3 m from the receiver, and a challenging non-line-of-sight (NLOS) channel condition where the transmitter is placed at 7 m from the receiver and in the presence of several obstacles between them. Thus, the experiments were performed in a contested wireless environment with severe interference from nearby Wi-Fi devices as well as multipath effect.
Figure 6. (left) Placement of the radios for experimental evaluation; (right) experimental setting.
5.2. Data collection and training process
As far as the data collection and testing process is concerned, we first constructed a ~10GB dataset by collecting waveform data in the line-of-sight (LOS) configuration, and then used this data to train RFNet through Keras. Then, we tested our models on live-collected data in both LOS and NLOS conditions. The transmitter radio used was a Zedboard equipped with an AD9361 as RF front-end and using Gnuradio for baseband processing. Waveforms were transmitted at center frequency of 2.432 GHz (i.e., Wi-Fi's channel 5).
To train RFNet, we use an ℓ2 regularization parameter λ = 0.0001. We also use an Adam optimizer with a learning rate of ℓ = 10−4 and categorical cross-entropy as a loss function. All architectures are implemented in Python, on top of the Keras framework and with Tensorflow as the backend engine.
5.3. Single-carrier evaluation
We consider the challenging problem of joint modulation and channel recognition in a single-carrier system where (i) modulation is chosen among BPSK, QPSK, 8PSK, 16-QAM, 32-QAM, and 64-QAM; (ii) spectrum is shifted of 0, 1 KHz, and 2 KHz from its center frequency. Due to space limitations, we only report results on the LOS scenario for the single-carrier scenario and report in Section 5.4 the performance of RFNet on the NLOS scenario with the multicarrier OFDM system.
Figure 7. Comparison among RFNet, Dense, and Linear.10
Figure 8. (top) Test set classification accuracy vs. input size W/H vs. M, with K = 0 (no dense layer); (bottom) confusion matrices as function of M, W, and H.
Figure 9. Accuracy vs. number of filters vs. dense layer size.
Figure 10. Accuracy vs. transmitter's sampling rate.
Figure 11. Confusion matrices for transmitter's sampling rate of 5 MS/s and 10 MS/s, W, H = 10, C = 50 model.
5.4. Multicarrier evaluation
We evaluated PolymoRF on an OFDM system (in short, Poly-OFDM) which supports three different FFT sizes (64, 128, and 256) and three different symbol modulations in the FFT bins (BPSK, QPSK, and 8PSK), creating in total a combination of nine different parameter sets that are switched pseudo-randomly by the transmitter. A demo video where the transmitter switches FFT size every 0.5s is available at https://youtu.be/5vf_pb0nvKk. In the following, we use the C = 25, 25, 20 × 20, pipelined RFNet architecture, which presents latency of about 17 ms (see Section 5.5). In these experiments, we set (i) the transmitter's sampling rate to 5M samples/sec; PolymoRF's buffer size B to 250k I/Q samples; (iii) the switching time of the transmitter to 250 ms. Thus, RFNet is run approximately five times during each switching time.
The most critical aspect to be evaluated is how Poly-OFDM, an inference-based system, compares with an ideal system that has perfect knowledge of the modulation and FFT size being used by the transmitter at each time, which we call for simplicity Oracle. Although Oracle cannot be implemented in practice, we believe this experiment is crucial to understand what is the throughput loss with respect to a system where the physical layer configuration is known a priori. In Figure 12, we show the comparison between Oracle and Poly-OFDM as a function of the FFT size and the symbol modulation. As we notice, the overall throughput results decrease in the NLOS scenario, which is expected given the impairments imposed by the challenging channel conditions. On the other hand, the results in Figure 12 confirm that Poly-OFDM is able to obtain similar throughput performance with that of a traditional OFDM system, obtaining on the average 90% and 87% throughput of that of the traditional system.
Figure 12. Comparison between Oracle and Poly-OFDM, (top) LOS and (bottom) NLOS scenarios.
5.5. RFNet latency evaluation and comparison
Table 1 compares latency, the number of parameters, and BRAM occupation of RFNet vs. a C++ implementation running in the CPU of our test bed. As we can see, RFNet consumes at most 34% of the available BRAM of the platform. Moreover, Table 2 shows the comparison between the pipelined version of the ConvNet circuits and the CPU latency, as well as the look-up table (LUT) consumption increase with respect to the unpipelined version. Table 2 concludes that on the average, our parallelization strategies bring close to 60% and 100% latency reduction with respect to the unoptimized and CPU versions, respectively, with a LUT utilization increase of about 7% on the average.
Table 1. Latency/hardware consumption evaluation.
Table 2. Pipelined vs. CPU latency.
To give the reader a perspective of the amount of resources consumed on the FPGA, Figure 13 shows the FPGA implementation of respectively 10 × 10 and 20 × 20 RFNet model, both pipelined and with C = 25,25 architecture, where we highlight and color the resource consumption of RFNet with respect to the AD9361 circuitry. Figure 13 indicates that the resource consumption of the RFNet circuit is significantly lesser than the AD9361 one in the 10 × 10 case and becomes comparable with the 20 × 20 architecture. In any case, the overall resource consumption of our FPGA designs is approximately 50% of the total FPGA resources.
Figure 13. PolymoRF FPGA implementations.
Learning-based radios are envisioned to be able to automatically infer the current spectrum status in terms of occupancy,17 interference,2 and malicious activities.5 Most of the existing work is based on low-dimensional machine learning,4, 16, 24 which requires the cumbersome manual extraction of very complex, ad hoc features from the waveforms. For this reason, deep learning has been proposed as a viable alternative to traditional learning techniques.7 The key problem of RF modulation recognition through deep learning has been extensively investigated.6, 11, 12, 18, 19 The seminal work by O'Shea et al.12 proposed ConvNets-based to address the issue. However, the authors do not address the issue of what to do with the inferred RF information. Moreover, the aforesaid work proposes models leveraging a significant number of parameters, thus ultimately not applicable to real-time RF settings. Recently, Restuccia and Melodia13 have demonstrated the need for real-time hardware-based RF deep learning. However, the main limitation of this study13 is that it focused on the learning aspect only, ultimately not addressing the problem of connecting real-time inference with receiver reconfigurability.
This paper has proposed PolymoRF, a prototype that can be reused to develop and test novel polymorphic wireless communication systems. One of the key insights brought by our experimental evaluation is that the RF channel may impact the performance of RFNet to a significant extent. To this end, we can (i) train different learning models for different channels and reconfigure the weights of RFNet in the FPGA accordingly; and (ii) apply small, controlled modifications to the RF signal at the transmitter's side to compensate for the current RF channel condition. Another core aspect is the impact of polymorphism on the effectiveness of smart jamming attacks. We are conscious that the aforesaid issues are definitely worth investigating; however, they deserve separate papers and are the subject of our ongoing work.
This work is supported in part by the Office of Naval Research (ONR) under contracts N00014-18-9-0001. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements of the ONR or the U.S. government.
1. Analog Devices Incorporated. AD9361 RF agile transceiver data sheet, 2018. http://www.analog.com/media/en/technical-documentation/data-sheets/AD9361.pdf.
2. Chen, Y., Oh, H.-S. A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Commun. Surv. Tutor 18, 1 (2016), 848–859.
3. Cisco Systems. Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white paper, 2017. http://tinyurl.com/zzo6766.
4. Ghodeswar, S., Poonacha, P.G. An SNR estimation based adaptive hierarchical modulation classification method to recognize M-ary QAM and M-ary PSK signals. In Proceedings of International Conference on Signal Processing, Communication and Networking (ICSCN) (2015).
5. Jin, X., Sun, J., Zhang, R., Zhang, Y., Zhang, C. SpecGuard: Spectrum misuse detection in dynamic spectrum access systems. IEEE Trans. Mob. Comput 17, 12 (Dec 2018), 2925–2938.
6. Kulin, M., Kazaz, T., Moerman, I., Poorter, E.D. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications. IEEE Access 6, 2018, 18484–18501.
7. Mao, Q., Hu, F., Hao, Q., Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor 20, 4 (2018), 2595–2621.
8. Mitola, J., Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun 6, 4 (1999), 13–18.
9. Molanes, R.F., Rodríguez-Andina, J.J., Fariña, J. Performance characterization and design guidelines for efficient processor - FPGA communication in cyclone V FPSoCs. IEEE Trans. Ind. Electron. 65, 5 (2018), 4368–4377.
10. O'Shea, T.J., Corgan, J., Clancy, T.C. Convolutional radio modulation recognition networks. In International Conference on Engineering Applications of Neural Networks (2016), Springer, 213–226.
11. O'Shea, T.J., Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw 3, 4 (2017), 563–575.
12. O'Shea, T.J., Roy, T., Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process 12, 1 (2018), 168–179.
13. Restuccia, F., Melodia, T. Big data goes small: Real-time spectrum-driven embedded wireless networking through deep learning in the RF loop. In Proceedings of IEEE Conference on Computer Communications (INFOCOM), (2019).
14. Restuccia, F., Melodia, T. DeepWiERL: Bringing deep reinforcement learning to the internet of self-adaptive things. Proceedings of IEEE Conference on Computer Communications (INFOCOM), 2020.
15. Restuccia, F., Melodia, T. Physical-layer deep learning: Challenges and applications to 5G and beyond. arXiv:2004.10113 (2020).
16. Shi, Q., Karasawa, Y. Automatic modulation identification based on the probability density function of signal phase/ IEEE Trans. Commun 60, 4 (April 2012), 1033–1044.
17. Subramaniam, S., Reyes, H., Kaabouch, N. Spectrum occupancy measurement: An autocorrelation based scanning technique using USR. In Proceedings of IEEE Annual Wireless and Microwave Technology Conference (WAMICON) (2015).
18. Wang, T., Wen, C.-K., Wang, H., Gao, F., Jiang, T., Jin, S. Deep learning for wireless physical layer: Opportunities and challenges. China Commun 14, 11 (2017), 92–111.
19. West, N.E., O'Shea, T.J. Deep architectures for modulation recognition. In Proceedings of IEEE Internationat Symposium on Dynamic Spectrum Access Networks (DySPAN) (2017).
20. Winterstein, F., Bayliss, S., Constantinides, G.A. High-level synthesis of dynamic data structures: A case study using Vivado HLS. In Proceedings of Internationat Conference on Field-Programmable Technology (FPT) (2013).
21. Xilinx Inc. Zynq-7000 SoC data sheet: Overview, 2018. https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.
22. Xilinx Inc. ZC706 evaluation board for the Zynq-7000 XC7Z045 all programmable SoC user guide, 2018. https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf.
23. Xilinx Inc.. AXI reference guide, UG761 (v13.1) March 7, 2011 (2011). https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf0.0.0.0.
24. Xiong, W., Bogdanov, P., Zheleva, M. Robust and efficient modulation recognition based on local sequential IQ features. In Proceedings of IEEE Conference on Computer Communications (INFOCOM) (2019).
25. Yu, Y., Wang, T., Liew, S.C. Deep-reinforcement learning multiple access for heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 37, 6 (2019), 1277–1290.
a. Class labels are ordered by modulation and frequency shift, that is, from "BPSK, 0 KHz", "BPSK, 1 KHz", … to "64-QAM, 2 KHz".
To view the accompanying Technical Perspective, visit doi.acm.org/10.1145/3547130
The original version of this paper was published in Proceedings of the 21st Int. Symp. on Theory, Algorithmic Foundations and Protocol Designs for Mobile Networks and Mobile Computing (Oct. 2020), 271–280.
©2022 ACM 0001-0782/22/9
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to publish from [email protected] or fax (212) 869-0481.
The Digital Library is published by the Association for Computing Machinery. Copyright © 2022 ACM, Inc.
No entries found