Developing faster algorithms is an important but elusive goal for data scientists. The ability to accelerate complex computing tasks and reduce latency has far-reaching ramifications in areas such as natural language processing, video streaming, autonomous robotics, gaming, and extended reality.
Yet for all the hype surrounding computer algorithms and the increasingly sophisticated ways they operate, a basic fact stands out: these algorithms are typically built atop matrix multiplication, a basic type of linear algebra. The underlying mathematical framework has not changed a great deal since the inception of computing—and finding more efficient formulas has proved elusive.
No entries found
Log in to Read the Full Article
Sign In
Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.