acm-header
Sign In

Communications of the ACM

News

Distilling What We Know


layered graph, illustration

Credit: All_Is_Magic

The sheer size and complexity of today's generative pretrained transformer (GPT) models is nothing less than astounding. OpenAI's GPT-3, for example, possesses somewhere in the neighborhood of 175 billion parameters, and there is speculation GPT-4 could have as many as 10 trillion parameters.a

All of this introduces enormous overhead in terms of required cloud resources, including compute cycles and energy consumption. At the moment, the computer power required to train state-of-the-art artificial intelligence (AI) models is rising at a rate of 15x every two years.b The cost of training a large GPT model can run into the millions of dollars.c Retraining a model to fit onto a device like a laptop or smartphone can push the price tag up considerably more.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account