University of California, San Francisco (UCSF) researchers have genetically engineered E. coli bacteria with a specific molecular circuitry that will enable scientists to program the cells to communicate and perform computations. The process can be used to develop cells that act like miniature computers that can be programmed to function in a variety of ways, says UCSF professor Christopher A. Voigt. "Here, we've taken a colony of bacteria that are receiving two chemical signals from their neighbors, and have created the same logic gates that form the basis of silicon computing," Voigt says.
The technology will enable researchers to use cells to perform specific, targeted tasks, says UCSF's Mary Anne Koda-Kimble.
The purpose of the research is to be able to utilize all of biology's tasks in a reliable, programmable way, Voigt says. He says the automation of biological processes will advance research in synthetic biology. The researchers also plan to develop a formal language for cellular computation that is similar to the programming languages used to write computer code, Voigt says.
From UCSF News
View Full Article
Abstracts Copyright © 2010 Information Inc., Bethesda, Maryland, USA
No entries found