acm-header
Sign In

Communications of the ACM

ACM TechNews

Who’s the Most Influential in a Social Graph?


View as: Print Mobile App Share:
David Bader

Georgia Tech professor David Bader

Credit: Georgia Tech

Georgia Tech researchers say they have developed an algorithm that quickly determines betweenness centrality for streaming graphs.

They say the algorithm also can identify influencers as information changes within a network. "Our algorithm stores the graph’s prior centrality data and only does the bare minimal computations affected by the inserted edges," says Georgia Tech professor David Bader. In some situations, Bader says the software can compute betweenness centrality more than 100 times faster than conventional methods.

He notes advertisers could use the software to identify which celebrities are most influential on social media during product launches. "Despite a fragmented social media landscape, data analysts would be able to use the algorithm to look at each social media network and mark inferences about a single influencer across these different platforms," Bader says.

From Georgia Tech News
View Full Article

Abstracts Copyright © 2012 Information Inc., Bethesda, Maryland, USA 


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account