Although electronic devices continue to shrink, transistors based on semiconductors can only get so small. "At the rate the current technology is progressing, in 10 or 20 years, they won’t be able to get any smaller," says Michigan Technological University's Yoke Khin Yap.
He also notes that semiconductors waste a lot of energy in the form of heat. He is working to develop semiconductor-less transistors using a nanoscale insulator with nanoscale metals on top.
Yap and Oak Ridge National Laboratory researchers found that the method allowed electrons to jump very precisely from gold dot to gold dot, a phenomenon known as quantum tunneling. When sufficient voltage is applied, the transistor switches to a conducting state. When the voltage is lowered and turned off, the transistor returns to its natural state as an insulator. In addition, no electrons from the gold dots escaped, thus keeping the tunneling channel cool.
The key to the gold-and-nanotube device is its submicroscopic size. "The gold islands have to be on the order of nanometers across to control the electrons at room temperature," notes Michigan Tech's John Jaszczak.
From Michigan Tech News
View Full Article
Abstracts Copyright © 2013 Information Inc., Bethesda, Maryland, USA
No entries found