Mottronics involves materials that can be induced to transition between electrically conductive and insulating phases, and controlling them means Mott materials could be used for future transistors and memories that feature higher energy efficiencies and faster switching speeds than conventional devices. Berkeley Lab researchers have found that the conducting and insulating phases of ultra-thin films of Mott materials can be controlled by applying an epitaxial strain to the crystal lattice.
"Our work shows how an epitaxial mismatch in the lattice can be used as a knot to tune the energetic landscape of Mott materials and thereby control conductor/insulator transitions," says Berkeley Lab's Jian Liu.
The researchers focused on thin films of neodymium nickel oxide using ALS beamline 8.0.1, a high flux undulator beamline that produces x-ray beams optimized for the study of nanoscale materials and strongly correlated physics. The researchers were able to tune the energetic balance and control the conducting and insulating transition by applying enough epitaxial strain to change the space between the ions.
"Our findings give us a better understanding of the physics behind the magnetic properties of these nickelate films and point to potential applications for this magnetism in novel Mottronics devices," Liu says.
From Berkeley Lab News Center
View Full Article
Abstracts Copyright © 2014 Information Inc., Bethesda, Maryland, USA
No entries found