Quantum computers are often heralded as the future of smarter searching and lightning fast performance. But their amazing mathematical skills may also create grave security risks for data that has long been safely guarded by the premise that certain math problems are simply too complex for computers to solve.
Now computer scientists at MIT and the University of Innsbruck say they have assembled the first five quantum bits (qubits) of a quantum computer that could someday factor any number, and thereby crack the security of traditional encryption schemes.
Much of the world’s digital data is currently protected by public key cryptography, an encryption method that relies on a code based partly in factoring large numbers. Computers have traditionally struggled to do the calculations based on factoring, so data transferred in this way remains secure. On Tuesday, two pioneers of this method, Whitfield Diffie and Martin E. Hellman, won the 2015 Turing Award, the highest honor in computer science. The thrust of their work underpins the most widely used encryption method in the world called the RSA algorithm.
"RSA is used everywhere," says Matthew Green, a computer scientist who specializes in cryptography at the Johns Hopkins Information Security Institute. "Every time you make a web connection you're probably using RSA encryption. Whenever you send a text message on an iPhone, you're using RSA encryption."
From IEEE Spectrum
View Full Article
No entries found