acm-header
Sign In

Communications of the ACM

ACM News

Machine Learning’s ‘Amazing’ Ability to Predict Chaos


View as: Print Mobile App Share:
Researchers have used machine learning to predict the chaotic evolution of a model flame front.

Scientists are using machine learning to predict the future evolution of chaotic systems.

Credit: DVDP

Half a century ago, the pioneers of chaos theory discovered that the "butterfly effect" makes long-term prediction impossible. Even the smallest perturbation to a complex system (like the weather, the economy or just about anything else) can touch off a concatenation of events that leads to a dramatically divergent future. Unable to pin down the state of these systems precisely enough to predict how they'll play out, we live under a veil of uncertainty.

But now the robots are here to help.

In a series of results reported in the journals Physical Review Letters and Chaos, scientists have used machine learning — the same computational technique behind recent successes in artificial intelligence — to predict the future evolution of chaotic systems out to stunningly distant horizons. The approach is being lauded by outside experts as groundbreaking and likely to find wide application.

"I find it really amazing how far into the future they predict" a system's chaotic evolution, said Herbert Jaeger, a professor of computational science at Jacobs University in Bremen, Germany.

The findings come from veteran chaos theorist Edward Ott and four collaborators at the University of Maryland. They employed a machine-learning algorithm called reservoir computing to "learn" the dynamics of an archetypal chaotic system called the Kuramoto-Sivashinsky equation. The evolving solution to this equation behaves like a flame front, flickering as it advances through a combustible medium. The equation also describes drift waves in plasmas and other phenomena, and serves as "a test bed for studying turbulence and spatiotemporal chaos," said Jaideep Pathak, Ott's graduate student and the lead author of the new papers.

 

From Quanta magazine


View Full Article

 


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account