acm-header
Sign In

Communications of the ACM

ACM News

Computer Theorists Show Path to Verifying that Quantum Beats Classical


View as: Print Mobile App Share:
Closeup of an Intel wafer.

Quantum supremacy, which describes a quantum computer's ability to solve a computational task that would be prohibitively difficult for any classical algorithm, is considered a critical milestone in quantum computing.

Credit: Steve Jurvetson

As multiple research groups around the world race to build a scalable quantum computer, questions remain about how the achievement of quantum supremacy will be verified.

Quantum supremacy is the term that describes a quantum computer's ability to solve a computational task that would be prohibitively difficult for any classical algorithm. It is considered a critical milestone in quantum computing, but because the very nature of quantum activity defies traditional corroboration, there have been parallel efforts to find a way to prove that quantum supremacy has been achieved.

Researchers at the University of California, Berkeley, have just weighed in by giving a leading practical proposal known as random circuit sampling (RCS) a qualified seal of approval with the weight of complexity theoretic evidence behind it. Random circuit sampling is the technique Google has put forward to prove whether or not it has achieved quantum supremacy with a 72-qubit computer chip called Bristlecone, unveiled earlier this year.=

The UC Berkeley computer theorists published their proof of RCS as a verification method in a paper published Monday, Oct. 29, in the journal Nature Physics.

"The need for strong evidence for quantum supremacy is under-appreciated, but it's important to pin this down," said study principal investigator Umesh Vazirani, Roger A. Strauch Professor of Electrical Engineering and Computer Science at UC Berkeley. "Besides being a milestone on the way to useful quantum computers, quantum supremacy is a new kind of physics experiment to test quantum mechanics in a new regime. The basic question that must be answered for any such experiment is how confident can we be that the observed behavior is truly quantum and could not have been replicated by classical means. That is what our results address."

 

From Phys.org
View Full Article

 


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account