Curiosity often breeds innovation, which was precisely the case with Grace Murray Hopper. As a child, she would often dismantle household electronics to see how they worked—a habit that forced her mother to limit Grace to taking apart just one alarm clock. Her interest in machines and how they functioned served her well as she applied her knowledge of mathematics and physics to develop the first computers, and then to advance computer programming.
Hopper transitioned from dismantling household electronics to dismantling complex equations and theories. She chose to study mathematics and physics at Vassar College, and eventually obtained her masters and Ph.D. in mathematics from Yale University. During her Ph.D., she did double-duty as a student and professor, teaching math at Vassar College during much of her PhD. She would remain on as a professor of mathematics there for over ten years.
Her transition from mathematician to programmer in 1944 was made possible through military service in the Navy Reserves. Hopper first attempted to enrol in the Navy during World War II. However, at the age of 34, standing at 5'6" and only 105 pounds, in 1940 she was considered too old and too small for active military duty—and her role as a professor of mathematics was also deemed too important to the war effort for her to leave. But Hopper was determined to serve her country, and four years later—after successfully obtaining a leave of absence as a professor and special exemption from the weight requirement, she enlisted in the Navy Reserve.
Hopper's first assignment placed her at Harvard, where she began work on the first Mark I computer for the Bureau of Ships Computation Project. The excitement (and no doubt challenge) of programming the world's first computers led Hopper to turn down a full professorship from Vassar to remain working at Harvard and their Computation Lab. This decision established her incredible career trajectory.
In 1947, as Hopper was working on the Mark II computer at Harvard, her team discovered a moth stuck in a relay, a type of electric switch. This impeded the operation of the relay, and therefore the function of the computer itself. The remains of the moth can still be seen in the team's log at the Smithsonian. Hopper is often claimed to have coined the phrase "debugging" to refer to identifying issues in computer code. While it's a charming story, the phrase "debugging" was not used in any of the team's usage logs, and in fact, "bug" had already been in use in the engineering field for quite some time. However, it is technically true that with the moth, Hopper found the first "computer bug."
From Quartz
View Full Article
No entries found