acm-header
Sign In

Communications of the ACM

ACM News

Doctors are Using AI to Triage COVID-19 patients. The Tools May Be Here to Stay


View as: Print Mobile App Share:
Checking a patient's x-ray on a tablet.

The coronavirus pandemic has turned into a gateway for the adoption of artificial intelligence in healthcare.

Credit: Getty Images

Rizwan Malik had always had an interest in AI. As the lead radiologist at the Royal Bolton Hospital, run by the UK's National Health Service (NHS), he saw its potential to make his job easier. In his hospital, patients often had to wait six hours or more for a specialist to look at their x-rays. If an emergency room doctor could get an initial reading from an AI-based tool, it could dramatically shrink that wait time. A specialist could follow up the AI system's reading with a more thorough diagnosis later.

So in September of last year, Malik took it upon himself to design a conservative clinical trial that would help showcase the technology's potential. He identified a promising AI-based chest x-ray system called qXR from the Mumbai-based company Qure.ai. He then proposed to test the system over six months. For all chest x-rays handled by his trainees, it would offer a second opinion. If those opinions consistently matched his own, he would then phase the system in permanently to double-check his trainees' work for him. After four months of reviews from multiple hospital and NHS committees and forums, the proposal was finally approved.

But before the trial could kick off, covid-19 hit the UK. What began as a pet interest suddenly looked like a blessing. Early research had shown that in radiology images, the most severe covid cases displayed distinct lung abnormalities associated with viral pneumonia. With shortages and delays in PCR tests, chest x-rays had become one of the fastest and most affordable ways for doctors to triage patients.

Within weeks, Qure.ai retooled qXR to detect covid-induced pneumonia, and Malik proposed a new clinical trial, pushing for the technology to perform initial readings rather than just double-check human ones. Normally, the updates to both the tool and the trial design would have initiated a whole new approval process. But without more months to spare, the hospital greenlighted the adjusted proposal immediately. "The medical director basically said, 'Well, do you know what? If you think it's good enough, crack on and do it,'" Malik recalls. "'We'll deal with all the rest of it after the event.'"

 

From MIT Technology Review
View Full Article

 


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account