Back in November, the computer scientist and cognitive psychologist Geoffrey Hinton had a hunch. After a half-century's worth of attempts—some wildly successful—he'd arrived at another promising insight into how the brain works and how to replicate its circuitry in a computer.
"It's my current best bet about how things fit together," Hinton says from his home office in Toronto, where he's been sequestered during the pandemic. If his bet pays off, it might spark the next generation of artificial neural networks—mathematical computing systems, loosely inspired by the brain's neurons and synapses, that are at the core of today's artificial intelligence. His "honest motivation," as he puts it, is curiosity. But the practical motivation—and, ideally, the consequence—is more reliable and more trustworthy AI.
A Google engineering fellow and cofounder of the Vector Institute for Artificial Intelligence, Hinton wrote up his hunch in fits and starts, and at the end of February announced via Twitter that he'd posted a 44-page paper on the arXiv preprint server. He began with a disclaimer: "This paper does not describe a working system," he wrote. Rather, it presents an "imaginary system." He named it, "GLOM." The term derives from "agglomerate" and the expression "glom together."
From MIT Technology Review
View Full Article
No entries found