acm-header
Sign In

Communications of the ACM

ACM News

Will the NSA Finally Build Its Superconducting Spy Computer?


View as: Print Mobile App Share:
Artist's exaggerated illustration of a supercooled supercomputer.

With new forms of superconducting logic and memory in development, the Intelligence Advanced Research Projects Activity, the U.S. intelligence communitys arm for high-risk R&D, has launched an ambitious program to create the fundamental building blocks o

Credit: Bryan Christie Design

Today, silicon microchips underlie every aspect of digital computing. But their dominance was never a foregone conclusion. Throughout the 1950s, electrical engineers and other researchers explored many alternatives to making digital computers.

One of them seized the imagination of the U.S. National Security Agency (NSA): a superconducting supercomputer. Such a machine would take advantage of superconducting materials that, when chilled to nearly the temperature of deep space—just a few degrees above absolute zero—exhibit no electrical resistance whatsoever. This extraordinary property held the promise of computers that could crunch numbers and crack codes faster than transistor-based systems while consuming far less power.

For six decades, from the mid-1950s to the present, the NSA has repeatedly pursued this dream, in partnership with industrial and academic researchers. Time and again, the agency sponsored significant projects to build a superconducting computer. Each time, the effort was abandoned in the face of the unrelenting pace of Moore's Law and the astonishing increase in performance and decrease in cost of silicon microchips.

Now Moore's Law is stuttering, and the world's supercomputer builders are confronting an energy crisis. Nuclear weapon simulators, cryptographers, and others want exascale supercomputers, capable of 1,000 petaflops—1 million trillion floating-point operations per second—or greater. The world's fastest known supercomputer today, China's 34-petaflop Tianhe-2, consumes some 18 megawatts of power. That's roughly the amount of electricity drawn instantaneously by 14,000 average U.S. households. Projections vary depending on the type of computer architecture used, but an exascale machine built with today's best silicon microchips could require hundreds of megawatts.

 

From IEEE Spectrum


View Full Article


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account