acm-header
Sign In

Communications of the ACM

ACM News

Detecting Dark Matter With Quantum Computers


View as: Print Mobile App Share:
Artist's conception of a dark matter sub-atomic particle.

Scientists at the U.S. Department of Energy’s Fermilab have found a way to detect dark matter using quantum computers.

Credit: SciTechDaily

Dark matter makes up about 27% of the matter and energy budget in the universe, but scientists do not know much about it. They do know that it is cold, meaning that the particles that make up dark matter are slow-moving. It is also difficult to detect dark matter directly because it does not interact with light. However, scientists at the U.S. Department of Energy's Fermi National Accelerator Laboratory (Fermilab) have discovered a way to use quantum computers to look for dark matter.

Aaron Chou, a senior scientist at Fermilab, works on detecting dark matter through quantum science. As part of DOE's Office of High Energy Physics QuantISED program, he has developed a way to use qubits, the main component of quantum computing systems, to detect single photons produced by dark matter in the presence of a strong magnetic field.

How quantum computers could detect dark matter

A classical computer processes information with binary bits set to either 1 or 0. The specific pattern of ones and zeros makes it possible for the computer to perform certain functions and tasks. In quantum computing, however, qubits exist at both 1 and 0 simultaneously until they are read, due to a quantum mechanical property known as superposition. This property allows quantum computers to efficiently perform complex calculations that a classical computer would take an enormous amount of time to complete.

 

From SciTechDaily
View Full Article

 


 

No entries found

Sign In for Full Access
» Forgot Password? » Create an ACM Web Account