"These things are hard to tip over," geologist Wilson Bonner assures me as the four-wheeled all-terrain vehicle he's piloting tilts suddenly sideways, pitching me toward the churned up mud beneath our wheels. We're grinding up the side of a thickly forested hill in rural Ontario, Canada, on a chilly fall day, heading toward a spot that Bonner's employer, startup KoBold Metals, says represents the marriage of cutting-edge artificial intelligence with one of humanity's oldest industries.
We do indeed complete the half-hour trek relatively unmuddied, finally breaking through a ring of broken trees and mangled brush into a swath of bulldozed mud. A black pipe about as wide around as my arm juts out of the ground—the top end of a hole nearly a kilometer deep that was punched into the ground by a truck-sized drilling rig that sits idly nearby. It's not much to look at, but this hole might mark a step into the future of mining, an industry crucial for the world's transition to renewable energy.
As the world fitfully begins to shift from fossil fuels to greener alternatives, there's an intensifying global scramble to find the vast quantities of cobalt, lithium and other metals required to build all the electric car batteries, solar panels, and wind turbines we're going to need. But finding new mineral deposits has always been difficult and expensive, and it's only getting more so. Most of the world's easily discovered reserves are already being tapped. The ones that remain tend to be in remote locales and deep underground. Miners generally say only 1 in 100 exploratory boreholes turns up anything.
From Wired
View Full Article
No entries found