Photonic computing has seen its share of research breakthroughs and deep research winters, much like the history of artificial intelligence (AI). Now, with the resurgence of AI, the huge amounts of energy today's large neural-network models need when running on electronic computers is reawakening interest in uniting the two.
More than 30 years ago, during one of the booms in research into artificial neural networks, Demetri Psaltis and colleagues at the California Institute of Technology demonstrated how techniques from holography could perform rudimentary face recognition. The team members showed they could store as many as one billion weights for a two-layer neural network using the core elements from a liquid-crystal display. Similar spatial light modulators became the foundation of several attempts to commercialize optical computing technology, including those by U.K.-based startup Optalysys, which has focused in recent years on applying the technology to accelerating homomorphic encryption to support secure remote computing.
No entries found