Researchers at the University of Electro-communications and the Japan Science and Technology Agency have developed a touchscreen interface that features three-dimensional (3D) elements, enabling users to squeeze the interface to interact with the computer. The PhotoelasticTouch system uses transparent rubber shapes on top of a liquid crystal display (LCD), which act as input devices. The interface was presented at ACM SIGGRAPH earlier this year, where attendees could test the interface. For example, picking up a rubber shape and twisting it could pour virtual paint onto the surface. The interface provides a more tactile interaction than normal touchscreen interfaces.
In the interface, light from the LCD is polarized, and a camera above the screen records light through a polarized filter. When the transparent rubber object between the LCD and the camera is altered, the polarization of the LCD light is changed. The camera detects the change and the system responds to the deformation.
Covering the entire screen with transparent rubber creates a tactile surface that responds to position and pressure. The rubber is an overlay, instead of being built into the display, because the researchers worked with off-the-shelf LCD touchscreens.
View a video of the PhotoelasticTouch system being used in a painting application.
View a video of the PhotoelasticTouch system being used with buttons and other user interfaces.
From Singularity Hub
View Full Article
Abstracts Copyright © 2009 Information Inc., Bethesda, Maryland, USA
No entries found