By Adolfo Guzmán, Harold V. McIntosh
Communications of the ACM,
August 1966,
Vol. 9 No. 8, Pages 604-615
10.1145/365758.365787
Comments
A programming language is described which is applicable to problems conveniently described by transformation rules. By this is meant that patterns may be prescribed, each being associated with a skeleton, so that a series of such pairs may be searched until a pattern is found which matches an expression to be transformed. The conditions for a match are governed by a code which also allows subexpressions to be identified and eventually substituted into the corresponding skeleton. The primitive patterns and primitive skeletons are described, as well as the principles which allow their elaboration into more complicated patterns and skeletons. The advantages of the language are that it allows one to apply transformation rules to lists and arrays as easily as strings, that both patterns and skeletons may be defined recursively, and that as a consequence programs may be stated quite concisely.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.