By W. H. Payne, J. R. Rabung, T. P. Bogyo
Communications of the ACM,
February 1969,
Vol. 12 No. 2, Pages 85-86
10.1145/362848.362860
Comments
An algorithm and coding technique is presented for quick evaluation of the Lehmer pseudo-random number generator modulo 2 ** 31 - 1, a prime Mersenne number which produces 2 ** 31 - 2 numbers, on a p-bit (greater than 31) computer. The computation method is extendible to limited problems in modular arithmetic. Prime factorization for 2 ** 61 - 2 and a primitive root for 2 ** 61 - 1, the next largest prime Mersenne number, are given for possible construction of a pseudo-random number generator of increased cycle length.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.