By W. A. Martin, D. N. Ness
Communications of the ACM,
February 1972,
Vol. 15 No. 2, Pages 88-93
10.1145/361254.361259
Comments
Items can be retrieved from binary trees grown with a form of the Algorithm Quicksort in an average time proportional to log n, where n is the number of items in the tree. The binary trees grown by this algorithm sometimes have some branches longer than others; therefore, it is possible to reduce the average retrieval time by restructuring the tree to make the branches as uniform in length as possible. An algorithm to do this is presented. The use of this algorithm is discussed, and it is compared with another which restructures the tree after each new item is added.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.