By W. Morven Gentleman
Communications of the ACM,
May 1972,
Vol. 15 No. 5, Pages 343-346
10.1145/355602.361311
Comments
In a companion paper to this, “I Methodology and Experiences,” the automatic Clenshaw-Curtis quadrature scheme was described and how each quadrature formula used in the scheme requires a cosine transformation of the integrand values was shown. The high cost of these cosine transformations has been a serious drawback in using Clenshaw-Curtis quadrature. Two other problems related to the cosine transformation have also been troublesome. First, the conventional computation of the cosine transformation by recurrence relation is numerically unstable, particularly at the low frequencies which have the largest effect upon the integral. Second, in case the automatic scheme should require refinement of the sampling, storage is required to save the integrand values after the cosine transformation is computed.
This second part of the paper shows how the cosine transformation can be computed by a modification of the fast Fourier transform and all three problems overcome. The modification is also applicable in other circumstances requiring cosine or sine transformations, such as polynomial interpolation through the Chebyshev points.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.