By I. M. Willers
Communications of the ACM,
September 1974,
Vol. 17 No. 9, Pages 504-508
10.1145/361147.361150
Comments
A new integration algorithm is found, and an implementation is compared with other programmed algorithms. The new algorithm is a step-by-step procedure for solving the initial value problem in ordinary differential equations. It is designed to approximate poles of small integer order in the solutions of the differential equations by continued fractions obtained by manipulating the sums of truncated Taylor series expansions.
The new method is compared with the Gragg-Bulirsch-Stoer, and the Taylor series method. The Taylor series method and the new method are shown to be superior in speed and accuracy, while the new method is shown to be most superior when the solution is required near a singularity. The new method can finally be seen to pass automatically through singularities where all the other methods which are discussed will have failed.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.