By Susan Owicki, David Gries
Communications of the ACM,
May 1976,
Vol. 19 No. 5, Pages 279-285
10.1145/360051.360224
Comments
An axiomatic method for proving a number of properties of parallel programs is presented. Hoare has given a set of axioms for partial correctness, but they are not strong enough in most cases. This paper defines a more powerful deductive system which is in some sense complete for partial correctness. A crucial axiom provides for the use of auxiliary variables, which are added to a parallel program as an aid to proving it correct. The information in a partial correctness proof can be used to prove such properties as mutual exclusion, freedom from deadlock, and program termination. Techniques for verifying these properties are presented and illustrated by application to the dining philosophers problem.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.