acm-header
Sign In

Communications of the ACM

Communications of the ACM

An analysis of inline substitution for a structured programming language


An optimization technique known as inline substitution is analyzed. The optimization consists of replacing a procedure invocation by a modified copy of the procedure body. The general problem of using inline substitution to minimize execution time subject to size constraints is formulated, and an approximate algorithmic solution is proposed. The algorithm depends on run-time statistics about the program to be optimized. Preliminary results for the CLU structured programming language indicate that, in programs with a low degree of recursion, over 90 percent of all procedure calls can be eliminated, with little increase in the size of compiled code and a small savings in execution time. Other conclusions based on these results are also presented.

The full text of this article is premium content


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account