By E. Morel, C. Renvoise
Communications of the ACM,
February 1979,
Vol. 22 No. 2, Pages 96-103
10.1145/359060.359069
Comments
The elimination of redundant computations and the moving of invariant computations out of loops are often done separately, with invariants moved outward loop by loop. We propose to do both at once and to move each expression directly to the entrance of the outermost loop in which it is invariant. This is done by solving a more general problem, i.e. the elimination of computations performed twice on a given execution path. Such computations are termed partially redundant. Moreover, the algorithm does not require any graphical information or restrictions on the shape of the program graph. Testing this algorithm has shown that its execution cost is nearly linear with the size of the program, and that it leads to a smaller optimizer that requires less execution time.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.