By Richard J. Hanson, John A. Wisniewski
Communications of the ACM,
April 1979,
Vol. 22 No. 4, Pages 245-251
10.1145/359094.359100
Comments
An efficient and numerically stable method is presented for the problem of updating an orthogonal decomposition of a matrix of column (or row) vectors. The fundamental idea is to add a column (or row) analogous to adding an additional row of data in a linear least squares problem. A column (or row) is dropped by a formal scaling with the imaginary unit, √-1, followed by least squares addition of the column (or row). The elimination process for the procedure is successive application of the Givens transformation in modified (more efficient) form. These ideas are illustrated with an implementation of the revised simplex method. The algorithm is a general purpose one that does not account for any particular structure or sparsity in the equations. Some suggested computational tests for determining signs of various controlling parameters in the revised simplex algorithm are mentioned. A simple means of constructing test cases and some sample computing times are presented.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.