By William M. McCormack, Robert G. Sargent
Communications of the ACM,
December 1981,
Vol. 24 No. 12, Pages 801-812
10.1145/358800.358803
Comments
New analytical and empirical results for the performance of future event set algorithms in discrete event simulation are presented. These results provide a clear insight to the factors affecting algorithm performance, permit evaluation of the hold model, and determine the best algorithm(s) to use. The analytical results include a classification of distributions for efficient insertion scanning of a linear structure. In addition, it is shown that when more than one distribution is present, there is generally an increase in the probability that new insertions will have smaller times than those in the future event set. Twelve algorithms, including most of those recently proposed, were empirically evaluated using primarily simulation models. Of the twelve tested, four performed well, three performed fairly, and five performed poorly.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.