By Robert D. Silverman
Communications of the ACM,
November 1991,
Vol. 34 No. 11, Pages 95-103
10.1145/125490.125504
Comments
Over the last 15 years the increased availability of computers and the introduction of the RSA cryptosystem has led to a number of new and remarkable algorithms for finding the prime factors of large integers. Factoring numbers is an arithmetic problem so simple to understand that school children are asked to do it. While multiplying or adding two very large numbers is simple and can be done quite quickly, the age-old problem of trying to find a number that divides another number still has no simple solution. Computer science has reached a point where it is starting to custom tailor the design of computers toward solving specific problems. This pracnique will discuss some of the more recent algorithms for factoring large numbers and how networks of computers can be used to run these algorithms quickly. Since this is a general exposition, we do not give detailed mathematical descriptions of the algorithms. We also allow ourselves to be somewhat casual with mathematical notation in places and hope that the mathematically sophisticated will forgive the looseness.
The full text of this article is premium content
No entries found
Log in to Read the Full Article
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.