acm-header
Sign In

Communications of the ACM

News

Researchers Simplify Parallel Programming


Argonne National Laboratory technicians

Technicians at Argonne National Laboratory work on MIRA, the fifth-fastest supercomputer in the world (as of July 2014).

Credit: Argonne National Laboratory

Using statistical models, computer scientists have shown that certain kinds of parallel computation are not as difficult as previously thought. Researchers from the Massachusetts Institute of Technology (MIT), Microsoft Research, and the Israel Institute of Technology (Technion) showed that for a large class of non-blocking parallel programs, lock-free algorithms will perform fully as well as the more complex wait-free algorithms.

"What we have shown is that you really don't need to design these wait-free algorithms," said Nir Shavit, a computer science professor at MIT. "Most methods that are lock-free are also wait-free."


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account