When a team of researchers at Bar-Ilan University in Israel recently announced they had successfully implanted DNA-based nanorobots inside living cockroaches—possibly paving the way for a revolution in cancer treatment—it marked the latest in a series of promising innovations to emerge from the synthetic biology community over the past decade.
In recent years, biotechnologists have started to come tantalizingly close to engineering next-generation drugs and vaccines, DNA-based computational systems, and even brand-new synthetic life forms. Amid all these advances, however, the development of synthetic biology software has largely failed to keep up with the pace of innovation in the field.
No entries found
Log in to Read the Full Article
Sign In
Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.
Need Access?
Please select one of the options below for access to premium content and features.
Create a Web Account
If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.
Join the ACM
Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
Subscribe to Communications of the ACM Magazine
Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.
Purchase the Article
Non-members can purchase this article or a copy of the magazine in which it appears.