Making a high-quality gear cannot be learned simply from an Internet search. You may find guidelines, papers, rules, lectures, and videos. However, applying this general knowledge to a specific production process and dealing with uncertainties and disruptions requires special know-how, most of which resides in people's heads and networks and is acquired to a large extent through "learning by doing."
Over 10 years ago, the vision of Industry 4.05 was announced at the Hannover Fair 2011 as part of the German/European High-Tech Strategy and adopted internationally by the Japanese Industrial Value Chain Initiative, the Advanced Manufacturing Initiative in the U.S., the Chinese Made in China 2025 strategy, the South Korean Manufacturing 3.0, and the U.K.'s High-Value Manufacturing Catapult research center. This "fourth industrial revolution" follows the earlier stages of mechanization (steam engine), mass production (assembly lines), and IT-based electronic automation. Core elements of Industry 4.0 include a reference architecture (RAMI 4.0) for networking increasingly autonomous IoT devices, and cyber-physical production systems (CPPS) where simulations ("Digital Twins") help monitor, predict, and control physical production systems. Moreover, personalized and context-specific "assistants" and related organization forms should enable "new work" settings.
No entries found