Sign In

Communications of the ACM

Review Articles

Disentangling Hype from Practicality: On Realistically Achieving Quantum Advantage


color lines in abstract drawing, illustration

Credit: Andrij Borys Associates, Shutterstock

Operating on fundamentally different principles than conventional computers, quantum computers promise to solve a variety of important problems that seemed forever intractable on classical computers. Leveraging the quantum foundations of nature, the time to solve certain problems on quantum computers grows more slowly with the size of the problem than on classical computers—this is called quantum speedup. Going beyond quantum supremacy,2 which was the demonstration of a quantum computer outperforming a classical one for an artificial problem, an important question is finding meaningful applications (of academic or commercial interest) that can realistically be solved faster on a quantum computer than on a classical one. We call this a practical quantum advantage, or quantum practicality for short.

Back to Top

Key Insights

ins01.gif

There is a maze of hard problems that have been suggested to profit from quantum acceleration: from cryptanalysis, chemistry and materials science, to optimization, big data, machine learning, database search, drug design and protein folding, fluid dynamics and weather prediction. But which of these applications realistically offer a potential quantum advantage in practice? For this, we cannot only rely on asymptotic speedups but must consider the constants involved. Being optimistic in our outlook for quantum computers, we identify clear guidelines for quantum practicality and use them to classify which of the many proposed applications for quantum computing show promise and which ones would require significant algorithmic improvements to become practical and relevant.


 

No entries found

Log in to Read the Full Article

Sign In

Sign in using your ACM Web Account username and password to access premium content if you are an ACM member, Communications subscriber or Digital Library subscriber.

Need Access?

Please select one of the options below for access to premium content and features.

Create a Web Account

If you are already an ACM member, Communications subscriber, or Digital Library subscriber, please set up a web account to access premium content on this site.

Join the ACM

Become a member to take full advantage of ACM's outstanding computing information resources, networking opportunities, and other benefits.
  

Subscribe to Communications of the ACM Magazine

Get full access to 50+ years of CACM content and receive the print version of the magazine monthly.

Purchase the Article

Non-members can purchase this article or a copy of the magazine in which it appears.
Sign In for Full Access
» Forgot Password? » Create an ACM Web Account